(x2−1)n | (x2−1)n | 2nx(x2−1)n−1x−(x2−1)n | ||||
∫ | dx=x | −∫x | dx | |||
x | x | x2 |
(x2−1)n | 2nx2(x2−1)n−1−(x2−1)n | |||
∫ | dx=(x2−1)n−∫ | dx | ||
x | x |
(x2−1)n | (2nx2−2n+2n)(x2−1)n−1−(x2−1)n | |||
∫ | dx=(x2−1)n−∫ | dx | ||
x | x |
(x2−1)n | 2n(x2−1)n−(x2−1)n+2n(x2−1)n−1 | |||
∫ | dx=(x2−1)n−∫ | dx | ||
x | x |
(x2−1)n | (x2−1)n | (x2−1)n−1 | ||||
∫ | dx=(x2−1)n−(2n−1)∫ | dx−2n∫ | dx | |||
x | x | x |
(x2−1)n | (x2−1)n−1 | |||
(1+2n−1)∫ | dx=(x2−1)n−2n∫ | dx | ||
x | x |
(x2−1)n | 1 | (x2−1)n−1 | ||||
∫ | dx= | (x2−1)n−∫ | dx | |||
x | 2n | x |