| t−1 | t | 1 | ||||
∫ | dt=∫ | dt − ∫ | dt | |||
| t2+1 | t2+1 | t2+1 |
| 1 | ||
1) ∫ | dt=ln|t2+1|+C | |
| t2+1 |
| t | ||
2) ∫ | dt=arctgt+C | |
| t2+1 |
| 1 | x | |||
∫ | dx a tutaj jest ∫ | dx | ||
| x2+1 | x2+1 |
| x+5 | ||
∫ | dx | |
| x3+3x2+7x+5 |
| 1 | x+1 | |||
Odp powinna wyjść lnU{2|x+1|}{√(x+1)2+4 + | arctg | +C | ||
| 2 | 2 |
| x+5 | A | Bx+C | |||
=U{x+5}{(x+1)(x2+2x+5)= | + | ||||
| x3+3x2+7x+5 | x+1 | x2+2x+5 |
| ⎧ | A=1 | ||
| ⇒ | ⎨ | B=−1 | |
| ⎩ | C=0 |
| x+5 | 1 | −x | ||||
∫ | dx =∫ | dx+∫ | dx | |||
| x3+3x2+7x+5 | x+1 | x2+2x+5 |
| 1 | ||
1) ∫ | dx=ln|x+1|+C | |
| x+1 |
| x | x | |||
2)∫ | dx=∫ | dx | ||
| x2+2x+5 | (x+1)2+4 |
| ⎧ | x+1=t√4=2t | ||
| podstawiam | ⎩ | dx=2dt |
| 2t−1 | 2 | 2t−1 | t | 1 | 1 | |||||||
∫ | 2dt= | ∫ | dt=∫ | dt− | ∫ | dt | ||||||
| 4t2+4 | 4 | t2+1 | t2+1 | 2 | t2+1 |
| t | ||
No i zatrzymuje się przy ∫ | dt | |
| t2+1 |
| t | 1 | dz | ||||
∫ | dt = | ∫ | = lnz=ln(t2+1)+C. | |||
| t2+1 | 2 | z |
| 1 | ||
t2+1 = z 2tdt = dz ⇒tdt = | dz | |
| 2 |
| x | (x+1) − 2 | |||
∫ | dx = | dx | ||
| x2+2x+5 | x2+2x+5 |
| 1 | (x2+2x+5)' | dx | ||||
= | ∫ | dx − 2∫ | ||||
| 2 | x2+2x+5 | (x+1)2+4 |
| 1 | x+1 | |||
= | ln(x2+2x+5) − arctg | |||
| 2 | 2 |
| dx | 1 | x | ||||
Wzór ∫ | = | arctg | , a≠0 | |||
| x2+a2 | a | a |
| xdx | (x+1) − 1 | 1 | 1 | x+1 | ||||||
∫ | = ∫ | dx= | ln(x2+2x+5)− | arctg | ||||||
| x2+2x+5 | x2+2x+5 | 2 | 2 | 2 |