x−6 | ||
∫ | dx | |
x2+2x+1 |
x−6 | x−6 | ||
= | |||
x2+2x+1 | (x+1)2 |
x−6 | A | B | 1 | −7 | |||||
= | + | = | + | i z tego policzyłem całki | |||||
(x+1)2 | x+1 | (x+1)2 | x+1 | (x+1)2 |
−7 | ||
∫ | dx = −7ln[(x+1)2] + C ? | |
(x+1)2 |
x−6 | x−6 | (x+1)−7 | 1 | 7 | |||||
= | = | = | − | ||||||
x2+2x+1 | (x+1)2 | (x+1)2 | x+1 | (x+1)2 |
7 | ||
całka = ln|x+1| + | ||
x+1 |
xa+1 | ||
∫xa dx= | , a≠1 | |
a+1 |
7 | ||
ln|x+1|+ | +C | |
x+1 |
x−6 | x−6 | 1 | ||||
∫ | dx=− | +∫ | dx | |||
(x+1)2 | x+1 | x+1 |
x−6 | ||
=− | +ln|x+1|+C | |
x+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |