Adamm:
1 i 2 aksjomat jest oczywisty
m = d(x, y), n = d(x, z), k = d(z, y)
d(x, y) | | d(x, z) | | d(z, y) | |
| ≤ |
| + |
| |
d(x, y)+1 | | d(x, z)+1 | | d(z, y)+1 | |
⇔
⇔
m(n+1)(k+1) ≤ n(m+1)(k+1) + k(n+1)(m+1)
⇔
mnk+mk+mn+m ≤ mnk+nk+mn+n + mnk+mk+kn+k
⇔
m ≤ nk+n + mnk+kn+k
co już jest oczywiste, bo nk+mnk+kn ≥ 0, a m ≤ n+k