7 | 5 | |||
sin | π* cos | π=? | ||
4 | 6 |
1 | 7 | 5 | 7 | 5 | 1 | |||||||
Liczę ze wzoru | (sin( | π+ | π)+sin( | π− | π)= | (sin | ||||||
2 | 4 | 6 | 4 | 6 | 2 |
84 | 84 | √3 | ||||
π)=sin | =π= | |||||
24 | 48 | 2 |
√6 | ||
W odpowiedziach jest | , wyjaśni ktoś dlaczego? | |
4 |
1 | 81π | 81π | |||
sin | ≠sin | ||||
2 | 24 | 48 |
π | π | |||
Masz wielokrotność kąta | i kąta | |||
4 | 6 |
1 | 7π | 5π | 7π | 5π | |||||
[sin( | + | )+sin( | − | )]= | |||||
2 | 4 | 6 | 4 | 6 |
1 | 21π+10π | 21π−10π | ||||
= | *[ sin | + sin | ]= | |||
2 | 12 | 12 |
1 | 31π | 11π | ||||
= | *[sin | +sin | ] i masz problem jak dokończyć | |||
2 | 12 | 12 |
7π | 5π | |||
sin( | )*cos( | )= | ||
4 | 6 |
π | π | π | π | |||||
=sin(2π− | )*cos(π− | )=(−sin | )*(−cos | )= | ||||
4 | 6 | 4 | 6 |
√2 | √3 | |||
= | * | = | ||
2 | 2 |
√6 | ||
= | ||
4 |