cos3x−1 | −3sin3x | |||
lim x→0 | =H limx→0 | = | ||
x2*cos(3x) | 2x*cos3x−3x2sin(3x) |
−3sin3x | 3 | 9 | ||||
=limx→0 | =−3* | =− | ||||
3x*(23cos3x−xsin3x) | 2 | 2 |
cos(3x)−1 | ||
limx→0 | ||
x2cos(3x) |
(cos(3x)−1)(cos(3x)+1) | ||
limx→0 | ||
x2cos(3x)(cos(3x)+1) |
cos2(3x)−1 | ||
limx→0 | ||
x2cos(3x)(cos(3x)+1) |
−sin2(3x) | ||
limx→0 | ||
x2cos(3x)(cos(3x)+1) |
sin2(3x) | −9 | ||
limx→0 | |||
9x2 | cos(3x)(cos(3x)+1) |
sin2(3x) | −9 | |||
limx→0 | limx→0 | |||
(3x)2 | cos(3x)(cos(3x)+1) |
−9 | 9 | |||
=12*( | )=− | |||
1*(1+1) | 2 |