| 1 | ||
∫ | dx | |
| 1−sin4x |
| dx | ||
Wystarczy t=tg x. dt = | ||
| cos2 x |
| 1+t2 | ||
całka = ∫ | dt = . . . | |
| 1+2t2 |
| t2 | ||
∫ | dt | |
| 1+2t2 |
| 1 | 1 | |||
= | ∫( 1 + | ) dt = ... | ||
| 2 | 1+2t2 |
| dx | 1 | |||
∫ | =∫ | dx | ||
| 1−sin4(x) | (1−sin2(x))(1+sin2(x)) |
| 1 | ||
=∫ | dx | |
| cos2(x)(1+sin2(x)) |
| dx | ||
dt = | ||
| cos2(x) |
| 1 | ||
∫ | ||
| 1+ |
| 1 | ||
1+t2= | ||
| cos2(x) |
| 1 | |
=cos2(x) | |
| 1+t2 |
| 1 | ||
1− | =1−cos2(x) | |
| 1+t2 |
| t2 | |
=sin2(x) | |
| 1+t2 |
| 1 | ||
=∫ | dx | |
| cos2(x)(1+sin2(x)) |
| dt | |||||||||||
= | |||||||||||
|
| dt | ||||||||
= | ||||||||
|
| 1+t2 | ||
=∫ | dt | |
| 1+2t2 |
| 1 | 2+2t2 | |||
= | ∫ | dt | ||
| 2 | 1+2t2 |
| 1 | 1 | |||
= | (∫dt+∫ | dt) | ||
| 2 | 1+2t2 |
| 1 | √2 | √2 | ||||
= | (∫dt+ | ∫ | dt) | |||
| 2 | 2 | 1+(√2t)2 |
| 1 | √2 | |||
= | t+ | arctg(√2t)+C | ||
| 2 | 4 |
| 1 | √2 | |||
= | tgx+ | arctg(√2tgx)+C | ||
| 2 | 4 |