| √x | ||
∫ | dx | |
| (1+3√x)2 |
| 1 | ||
6√x = t −> | x−5/6 dx = dt | |
| 6 |
| 1 | 1 | 1 | 1 | ||||
√x dx= | x1/2 dx = | x3/6 dx = | x8/6*x−5/6 dx = t8 dt | ||||
| 6 | 6 | 6 | 6 |
| t8 | t2(1+t2)2 − 2t4 − t2 | |||
... = 6∫ | dt = 6 ∫ | dt = | ||
| (1+t2)2 | (1+t2)2 |
| 2(t2+1)2 − t2 − 2 | ||
= 6[ ∫ t2 dt − ∫ | dt ] = | |
| (t2+1)2 |
| t−1 | 1 | |||
= 6[ ∫ t2 dt − ∫2 dt + ∫ | dt + ∫ | dt ] | ||
| t+1 | (t2+1)2 |
| t8 | ||
= 6∫ | dt | |
| (1+t2)2 |
| (−2t) | ||
∫(−3t7) | dt | |
| (1+t2)2 |