√x | ||
∫ | dx | |
(1+3√x)2 |
1 | ||
6√x = t −> | x−5/6 dx = dt | |
6 |
1 | 1 | 1 | 1 | ||||
√x dx= | x1/2 dx = | x3/6 dx = | x8/6*x−5/6 dx = t8 dt | ||||
6 | 6 | 6 | 6 |
t8 | t2(1+t2)2 − 2t4 − t2 | |||
... = 6∫ | dt = 6 ∫ | dt = | ||
(1+t2)2 | (1+t2)2 |
2(t2+1)2 − t2 − 2 | ||
= 6[ ∫ t2 dt − ∫ | dt ] = | |
(t2+1)2 |
t−1 | 1 | |||
= 6[ ∫ t2 dt − ∫2 dt + ∫ | dt + ∫ | dt ] | ||
t+1 | (t2+1)2 |
t8 | ||
= 6∫ | dt | |
(1+t2)2 |
(−2t) | ||
∫(−3t7) | dt | |
(1+t2)2 |