1 | √3+i | √3 | 1 | ||||
= | = | + | i | ||||
−√3+i | 3+1 | 4 | 4 |
√3 | ||
Czyli na chłopski rozum cosα = | , więc α = 30 | |
2 |
1 | ||
argument −tan−1( | )+π | |
√3 |
π | 5π | |||
argument = − | +π= | |||
6 | 6 |
1 | 5 | 5π | |||
(cos(− | π)+isin(− | )) | |||
2 | 6 | 6 |
1 | 5 | 5π | |||
(cos( | π)−isin( | )) | |||
2 | 6 | 6 |
1 | 1 | π | |||
(cos(π− | π)−isin(π− | )) | |||
2 | 6 | 6 |
1 | π | π | |||
(−cos( | )−isin( | )) | |||
2 | 6 | 6 |
1 | π | π | ||||
− | (cos( | )+isin( | )) | |||
2 | 6 | 6 |
1 | √3 | 1 | ||||
− | ( | +i | ) | |||
2 | 2 | 2 |
1 | ||
−√3}{4}− | i | |
4 |
√3 | ||
cosφ=− | ||
2 |
1 | ||
sinφ= | ||
2 |
π | 5π | |||
φ=π− | = | |||
6 | 6 |
5π | 5π | |||
z−1=(2*(cos | +isin | )−1= | ||
6 | 6 |
1 | 5π | 5π | ||||
= | *[cos(− | )+isin(− | )] | |||
2 | 6 | 6 |