1/ rysunek
2/kąt ostry 60o
3/ dorysujmy odcinki EK ∥ BL
4/ to |KL|=|CK|=|AB|=9 i |FL|=24 i |FK|=15
5/ h=2√3 , w=√3
z podobieństwa trójkątów FBL i FMK z cechy (kkk)
| 24 | 8 | |||
w skali k= | = | |||
| 15 | 5 |
| h | 8 | 5 | 10√3 | |||||
to | = | ⇒ u= | *2√3= | |||||
| u | 5 | 8 | 8 |
| 1 | 75√3 | |||
P(FMK)= | *15*u = | |||
| 2 | 8 |
| 1 | 36√3 | |||
P(CEK)= | *9*w = | |||
| 2 | 8 |
| 75√3−36√3 | ||
to P(CFME)= | ||
| 8 |
| 39√3 | ||
P(CFME)= | [j2] | |
| 8 |