3 | ||
limx→∞[(x+3)e1/4−x]=limx→∞x[(1+ | )e1/4−1]= | |
x |
(1+3/x)e1/4−1 | −3/x2e1/x+(1+3/x)e1/x(−1/x2) | |||
=limx→∞ | =H= | =4. | ||
1/x | −1/x2 |
ax − 1 | ||
limx→0 | = ln(a) | |
x |
e1/x − 1 | ||
limx→∞ | = 1 | |
1/x |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |