matematykaszkolna.pl
geometria kasia : Proszee o pomoc! W trójkącie prostokątnym przyprostokątne mają długość 12 cm i 5 cm. Przez wierzchołek kąta prostego poprowadzono prostą, która podzieliła ten trójkąt na dwa trójkąty o różnych obwodach. Oblicz stosunek długości promieni okręgów wpisanych w powstałe okręgi.
15 lut 20:50
Eta: rysunek z tw. Pitagorasa wyznaczamy IABI= 52+122= 169= 13 Ob(ADC) = Ob(DBC) , ponieważ y −− jest wspólnym bokiem tych trójkątów to 5+13−x = x+12 => 2x = 6 => x=3 zatem : IADI= 10 i IDBI= 3
 P 
ro .wp=

, p−− połowa obwodu Δ−ta
 p 
 P(ΔADC) 
to r1=

 p1 
 P(ΔBDC) 
r2=

 p2 
ponieważ obwody tych trójkątów są równe , to ; p1=p2 i wysokości tych trójkątów są też równe h to:
 r1 PΔADC  12*10*h 10 

=

=

=

 r2 PΔBDC 12*3*h 3 
 r1 10 
Odp:

=

 r2 3 
16 lut 00:59
Zielona Gałązka: Eta, jestem pełna podziwu dla Ciebieemotka Piękny rysunek i tok wytłumaczenia. Tylko kruca bomba proszę oświeć mnie, dlaczego te obwody są równe? Czy jest takie twierdzenie w matmie? Bo ja nie słyszałam. Pozdrówka serdeczne.
16 lut 01:56
Eta: Heheemotka Są tu lepsi od rysowania A co do równych obwodów .... z treści zadania .... przeczytaj emotka Też pozdrawiam
16 lut 02:17
Eta: Oczywiście ,że Kasia, zamiast "równych" , napisała " różnych " ! ale domyśliłam się ,że powinno być równych obwodach, bo inaczej to nie da się tego zad. rozwiązać, ......achch... ta nasza młodzież
16 lut 02:25
kasia : o kurde no faktycznie dzieki baaardzoooo emotka
16 lut 18:59