Obliczyć całkę stosując całkowanie przez podstawienie
PanFasola: Obliczyć całkę stosując całkowanie przez podstawienie:
10 gru 00:49
PanFasola: Niestety ale pojawił się jeszcze jeden problemowy przykład (na całkowanie przez podstawienie):
∫cos2n+1x dx, n∊N
10 gru 01:14
Adamm:
∫ (1−sin2(x))n cos(x) dx
podstaw u = sin(x)
10 gru 01:34
PanFasola: Dziękuję, wyszło ∫(1−u2)n du co mogę z tym dalej zrobić?
11 gru 17:42
PanFasola: No to może pierwszy przykład ktoś potrafi?
11 gru 19:24
jc: Zapisz w postaci sumy i całkuj wyraz po wyrazie.
Można też bez podstawiania (przykład):
| cos 5x + 5 cos 3x + 10 cos x | |
cos5x= |
| |
| 16 | |
| 1 | | sin 5x | | 5 | sin 3x | | 10 | |
całka = |
| |
| + |
|
| + |
| sin x |
| 16 | | 5 | | 16 | 3 | | 16 | |
11 gru 19:31
jc: Pierwszy przykład.
3 przypadki w zależności od liczby pierwiastków wielomianu w mianowniku.
| dx | | 1 | | 1 | | 1 | | ln|x−p| − ln|x−q| | |
∫ |
| = |
| ∫( |
| − |
| } dx = |
| , p≠q |
| (x−p)(x−q) | | p−q | | x−p | | x−q | | p−q | |
| dx | | 1 | | x−p | |
∫ |
| = |
| arctg |
| , r≠0 |
| (x−p)2 + r2 | | r | | r | |
11 gru 19:35