π | ||
kπ<x< | +kπ⇔ | |
2 |
π | 3π | |||
x∊(0, | )∪(π, | ) | ||
2 | 2 |
1 | ||
2)L= | ||
1−log2(sin2x) |
1 | 2 | ||
< | ponieważ 0<sin(2x)<1 z zał. to mianownik jest dodatni | ||
1−log2(sin2x) | 3 |
2 | ||
1< | (1−log2(sin2x)) | |
3 |
3 | ||
1−log2(sin2x)> | /−1 | |
2 |
1 | ||
−log2(sin(2x)> | ||
2 |
1 | ||
log2(sin2x)<− | ||
2 |
√2 | ||
sin(2x)< | ||
2 |
π | 3π | |||
0+2kπ<2x< | +2kπ lub | +2kπ<2x<π+2kπ /:2 i x∊(0,2π) ( to zał. z treści) | ||
4 | 4 |
π | 3π | π | ||||
kπ<x< | +kπ lub | +kπ<x< | +kπ | |||
8 | 8 | 2 |
π | 3π | π | ||||
0<x< | lub | <x< | odpowiada | |||
8 | 8 | 2 |
9π | 11π | 3π | ||||
π<x< | lub | <x< | ||||
8 | 8 | 2 |