| cos3x | ||
1) ∫ | dx
| |
| sin2x+sinx |
| 2x5+6x3+1 | ||
3) ∫ | ||
| x4+3x2 |
| dx | ||
6) ∫ | ||
| 25−x4 |
| 2*x5 + 6*x3 + 1 | 1 | |||
3) J = ∫ | dx = ∫(2*x + | }dx | ||
| x4 + 3*x2 | x2*(x2 + 3) |
| dx | ||
J = x2 + ∫ | dx = x2 + J1 gdzie | |
| x2*(x1 + 3) |
| dx | ||
J1 = ∫ | dx | |
| x2*(x1 + 3) |
| 1 | A | B | C*x + D | ||||
= | + | + | |||||
| x2*(x2 + 3) | x | x2 | x2 + 3 |
| 1 | (A + C)*x3 + (B + D)*x2 + 3*A*x + 3*B | ||
= | |||
| x2*(x2 + 3) | x2*(x2 + 3) |
| 1 | 0 | 1 | 1 | 0*x − 1/3 | |||||
= | + | * | + | ||||||
| x2*(x2 + 3) | x | 3 | x2 | x2 + 3 |
| 1 | 1 | 1 | 1 | ||||
= = | *( | − | ) | ||||
| x2*(x2 + 3) | 3 | x2 | x2 + 3 |
| 1 | 1 | 1 | 1 | 1 | dx | |||||||
J1 = | ∫( | − | )dx | ∫x−2dx − | ∫ | dx | ||||||
| 3 | x2 | x2 + 3 | 3 | 3 | x2 + 3 |
| −1 | 1 | |||
J1 = | − | J2 gdzie | ||
| 3*x | 3 |
| dx | ||
J2 = ∫ | ||
| x2 + 3 |
| √3dt | √3 | dt | √3 | |||||
J2 = ∫ | = | ∫ | = | arctg(t) | ||||
| 3*t2 + 3 | 3 | t2 + 1 | 3 |
| √3 | x | |||
J2 = | arctg( | ) | ||
| 3 | √3 |
| −1 | 1 | √3 | x | |||||
J1 = | − | * | arctg( | ) | ||||
| 3*x | 3 | 3 | √3 |
| 1 | √3 | x | ||||
J = x2 − | − | arctg( | ) | |||
| 3*x | 9 | √3 |
| 1 | ||
du = −3*e−3xdx v = | *sin(2*x) | |
| 2 |
| 1 | 3 | |||
J = u*v − ∫vdu = | *e−3*xsin(2*x) + | ∫e−3x*sin(2*x)dx | ||
| 2 | 2 |
| 1 | 3 | |||
J = | *e−3*x*sin(2*x) + | J1 gdzie | ||
| 2 | 2 |
| −1 | ||
du = −3*e−3*xdx v = | cos(2*x) | |
| 2 |
| 1 | 3 | |||
J1 = − | *e−3*x*cos(2*x) − | ∫e−3*x*cos(2*x)dx | ||
| 2 | 2 |
| 1 | 3 | |||
J1 = − | *e−3*x*cos(2*x) − | *J | ||
| 2 | 2 |
| 1 | 3 | 1 | 3 | |||||
J = | e−3*x + | (− | e−3*x*cos(2*x) − | J) | ||||
| 2 | 2 | 2 | 2 |
| 1 | 3 | 9 | ||||
J = | e−3*x*sin(2*x) − | *e−3*x*cos(2*x) − | *J | |||
| 2 | 4 | 4 |
| 13 | 1 | ||
J = | *e−3*x(2*sin(2*x) − 3*cos(2*x)) | ||
| 4 | 4 |
| 1 | ||
J = | e−3*x*(2*sin(2*x) − 3*cos(2*x)) + C | |
| 13 |
| 1 | ||
sin(α)*cos(β) = | *{sin(α − β) + sin(α + β)] | |
| 2 |
| 1 | ||
sin(2*x)*cos(4*x) = | *[sin(6*x) − sin(2*x)] | |
| 2 |
| 1 | ||
J = | [∫sin(6*x)dx − ∫sin(2*x)dx] | |
| 2 |
| 1 | 1 | −1 | ||||
J = | [− | *cos(6*x) − | *cos(2*x)] | |||
| 2 | 6 | 2 |
| 1 | ||
J = | *[−cos(6*x) + 3*cos(2*x)] + C | |
| 12 |
| dx | dx | |||
5) J = ∫ | = ∫ | |||
| 25 − x4 | (5 − x2)*(5 + x2) |
| 1 | A*x + B | C*x + D | |||
= | + | ||||
| 25 − x2 | 5 − x2 | 5 + x2 |
| 1 | 1 | 1 | 1 | ||||
= | *( | + | ) | ||||
| 25 − x2 | 10 | 5 − x2 | 5 + x2 |
| 1 | dx | dx | 1 | |||||
J = | (∫ | + ∫ | ) = | (J1 + J2) | ||||
| 10 | 5 − x2 | 5 + x2 | 10 |
| dx | dx | |||
J1 = ∫ | = ∫ | |||
| 5 − x2 | (√5 + x)*(√5 − x) |
| dx | A | B | |||
= | + | ||||
| (√5 + x)*(√5 − x) | √5 + x | √5 − x |
| 1 | ||
Po wyliczeniu A = B = | ||
| 2*√5 |
| 1 | 1 | 1 | 1 | ||||
= | *( | + | ) | ||||
| 5 − x2 | 2*√5 | √5 + x | √5 − x |
| 1 | dx | dx | ||||
J1 = | *(∫ | + ∫ | ) | |||
| 2√5 | √5 + x | √5 − x |
| 1 | ||
J1 = | (ln(√5 + x) − ln(√5 − x)) | |
| 2√5 |
| 1 | √5 + x | |||
J1 = | *ln | |||
| 2√5 | √5 − x |
| dx | ||
J2 = ∫ | ||
| 5 + x2 |
| √5dt | √5 | dt | √5 | |||||
J2 = ∫ | = | ∫ | = | *arctg(t) | ||||
| 5 + 5*t2 | 5 | t2 + 1 | 5 |
| √5 | x | |||
J2 = | *arctg( | |||
| 5 | √5 |
| √5 | x | |||
J2 = | *arctg( | ) | ||
| 5 | √5 |
| 1 | ||
J = | (J1 + J2) + C | |
| 10 |
| cos3x | (1 − sin2x)*cosx | |||
1) J = ∫ | dx = ∫ | dx | ||
| sin2 + sinx | sinx*(1 + sinx) |
| (1 − t2)dt | (1 − t)*(1 + t) | |||
J = ∫ | dt = ∫ | dt | ||
| t2 + t | t*(1 + t) |
| (1 − t)dt | ||
J = | przy zał. że 1 + t ≠ 0 | |
| t |
| dt | ||
J = ∫ | − ∫1dt = ln(t) − t | |
| t |