1 | ||
∑2nxn= | ||
1−2x |
d | d | 1 | ||
(∑2nxn)= | ||||
dx | dx | (1−2x) |
−1 | ||
∑n2nxn−1= | (−2) | |
(1−2x)2 |
2 | ||
∑(n+1)2n+1xn = | ||
(1−2x)2 |
1 | ||
∑(n+1)2nxn = | ||
(1−2x)2 |
1 | ||
A(x)= | ||
(1−2x)2 |
1 | ||
S(x)= | ||
(1−x)(1−2x)2 |
1 | A | B | C | ||||
= | + | + | |||||
(1−x)(1−2x)2 | 1−x | 1−2x | (1−2x)2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |