oblicz granice
mosqui: lim= (31/n +1/n)n
n−>∞
lim= n3(√n2+√n4+1−√2n)
n−>∞
22 lis 14:14
grzest:
| 1 | | 1 | |
limn→∞(31/n + |
| )n= limn→∞3(1+ |
| )n= |
| n | | 31/nn | |
| 1 | |
= limn→∞[(1+ |
| )n31/n]1/(31/n)=3e. |
| 31/nn | |
22 lis 15:05
grzest:
Korekta:
Pominąłem liczbę 3 w drugiej linijce.
22 lis 15:07