−2 * 5x − 7 | ||
f(x) = | ||
5x + 4 |
−2(5x+4)+1 | ||
f(x)= | ||
5x+4 |
1 | ||
f(x)=−2+ | ||
5x+4 |
−2*(5x+4)+8−7 | ||
f(x)= | , | |
5x+4 |
1 | ||
f(x)=−2+ | ||
5x+4 |
1 | 1 | |||
−2+ | =w ⇔ | =w+2 | ||
5x+4 | 5x+4 |
1 | |
=w+2 | |
t+4 |
−7−4w | −7−4w | |||
t= | i | >0⇔ | ||
w+2 | w+2 |
7 | ||
w=− | , w=−2 | |
4 |
7 | ||
w∊(−2,− | ) | |
4 |
−2*5x−7 | 1 | |||
f(x) = | =−2+ | |||
5x+4 | 5x+4 |
−ln(5)*5x | ||
f'(x) = | <0 → funkcja ścisle monotoniczna | |
(5x+4)2 |
1 | 1 | −7 | ||||
jeśli x→−∞ to 5x→0, więc −2+ | → −2+ | = | ||||
5x+4 | 4 | 8 |
1 | ||
jeśli x→∞ to 5x→∞, więc −2+ | → −2+0=−2 | |
5x+4 |
−7 | ||
zbiór wartości funkcji (−2; | ) | |
8 |
1 | 7 | |||
−2+ | =− | |||
4 | 4 |