√2−x−√1−x | ||
limx→ −∞ | ||
√x2+2x+3+x |
a2−b2 | ||
Zastosuj wzór a−b= | do licznika. | |
a+b |
1 | 1 | |||
limx→−∞ | * | , a konkretnie nie wiem jak to dalej | ||
√x2+2x+3+x | √2−x + √1−x |
1 | 1 | |||
bo teoretycznie to jest = [ | * | ] ale czy to jest na pewno =0 ? | ||
∞ | −∞ |
1 | √x2+2x+3−x | |||
... = | ||||
x+3 | √2−x+√1−x |
−1 | √1+2/x+3/x2+1 | |||
= | →−1 | |||
1+3/x | √1−2/x+√1−1/x |
1 | 1 | |||
Co to jest [ | * | ]? | ||
∞ | −∞ |
√2−x−√1−x | √2−x+√1−x | ||
* | = | ||
√x2+2x+3+x | √2−x+√1−x |
2−x−(1−x) | |
= | |
(√x2+2+3+x)*(√2−x+√1−x) |
1 | (√x2+2x+3−x) | |||
= | * | = | ||
(√x2+2x+3+x)*(√2−x+√1−x) | (√x2+2x+3−x) |
(√x2+2x+3−x) | ||
= | = | |
(x2+2x+3−x2)*(√2−x+√1−x) |
|x|*√1−2/x+3/x2−x | ||
= | = | |
(2x+3)*(√2−x+√1−x) |
−x*(√1−2/x+3/x2+1) | ||
= | ||
x*(2+3/x)*(√2−x+√1−x) |
−1*(√1−2/x+3/x2+1) | ||
limx→−∞ | =0 | |
(2+3/x)*(√2−x+√1−x) |
1 | √x2+2x+3−x | |||
... = | →0 | |||
2x+3 | √2−x + √1−x |