| √2−x−√1−x | ||
limx→ −∞ | ||
| √x2+2x+3+x |
| a2−b2 | ||
Zastosuj wzór a−b= | do licznika. | |
| a+b |
| 1 | 1 | |||
limx→−∞ | * | , a konkretnie nie wiem jak to dalej | ||
| √x2+2x+3+x | √2−x + √1−x |
| 1 | 1 | |||
bo teoretycznie to jest = [ | * | ] ale czy to jest na pewno =0 ? | ||
| ∞ | −∞ |
| 1 | √x2+2x+3−x | |||
... = | ||||
| x+3 | √2−x+√1−x |
| −1 | √1+2/x+3/x2+1 | |||
= | →−1 | |||
| 1+3/x | √1−2/x+√1−1/x |
| 1 | 1 | |||
Co to jest [ | * | ]? | ||
| ∞ | −∞ |
| √2−x−√1−x | √2−x+√1−x | ||
* | = | ||
| √x2+2x+3+x | √2−x+√1−x |
| 2−x−(1−x) | |
= | |
| (√x2+2+3+x)*(√2−x+√1−x) |
| 1 | (√x2+2x+3−x) | |||
= | * | = | ||
| (√x2+2x+3+x)*(√2−x+√1−x) | (√x2+2x+3−x) |
| (√x2+2x+3−x) | ||
= | = | |
| (x2+2x+3−x2)*(√2−x+√1−x) |
| |x|*√1−2/x+3/x2−x | ||
= | = | |
| (2x+3)*(√2−x+√1−x) |
| −x*(√1−2/x+3/x2+1) | ||
= | ||
| x*(2+3/x)*(√2−x+√1−x) |
| −1*(√1−2/x+3/x2+1) | ||
limx→−∞ | =0 | |
| (2+3/x)*(√2−x+√1−x) |
| 1 | √x2+2x+3−x | |||
... = | →0 | |||
| 2x+3 | √2−x + √1−x |