Prawdopodobieństwo
ania: Ojciec proponuje synowi następującą grę o kieszonkowe: syn rozmieści w dwóch kapeluszach 5
banknotów
po 100 zł i 5 dziesięciozłotowych. Następnie − z zamkniętymi oczami − wylosuje kapelusz, a z
niego jeden
banknot. Jak rozmieścić banknoty, by szansa wylosowania stuzłotówki była największa?
4 lis 23:06
Blee:
1 banknot 100PLN w jednym kapeluszu ... wszystkie pozostałe banknoty lądują w drugim kapeluszu
4 lis 23:09
Blee:
W efekcie mamy:
1 | | 1 | | 4 | | 13 | |
| *1 + |
| * |
| = |
| |
2 | | 2 | | 9 | | 18 | |
4 lis 23:10
ania: A dlaczego akurat tak?
4 lis 23:10
ania: 1/2 to wybór kapelusza tak?
A skad 1 4/9?
4 lis 23:14
Blee:
4 banknoty po 100PLN, na 9 banknotów łącznie w kapeluszu
4 lis 23:19
Blee:
widzę tutaj, że to zapewne jest zadanie konkursowe ... zanim je spiszesz, pomyśl chwilę
dlaczego tak to będzie
4 lis 23:20
ania: Dziękuję pieknie juz rozumiem
4 lis 23:20
Blee:
A jeżeli chcesz to wyliczyć to niestety trochę jest zabawy:
x −−− liczba banknotów 100 PLN w pierwszym kapeluszu
A) niech będzie podział 5 banknotów w jednym kapeluszu, a 5 w drugim
| 1 | | x | | 5−x | | 1 | | 5 | | 1 | |
P(A) = |
| ( |
| + |
| ) = |
| * |
| = |
| |
| 2 | | 5 | | 5 | | 2 | | 5 | | 2 | |
zauważ, że bez różnicy ile jest banknotów 100 PLN ... szansa zawsze będzie równa 50%
B) niech będzie podział 4 banknoty do 6 banknotów (x≤4):
| 1 | | x | | 5−x | | 1 | | 3x + 10 − 2x | | x + 10 | | 14 | |
P(B) = |
| ( |
| + |
| ) = |
| * |
| = |
| ≤ |
| |
| 2 | | 4 | | 6 | | 2 | | 12 | | 24 | | 24 | |
C) niech będzie podział 3 do 7 (x≤3)
| 1 | | x | | 5−x | | 1 | | 7x + 15 − 3x | | 4x + 15 | | 27 | |
P(C) = |
| ( |
| + |
| ) = |
| * |
| = |
| ≤ |
| |
| 2 | | 3 | | 7 | | 2 | | 21 | | 42 | | 42 | |
D) niech będzie podział 2 do 8 (x≤2):
| 1 | |
P(D) = |
| .... jak myślisz będzie analogicznie |
| 2 | |
4 lis 23:33