x + 1 | ||
lim x→∞ ( | )x2 | |
2x + 1 |
x | ||
lim x→+∞ ( | )x | |
x + 1 |
x+1 | 1 | |||
pierwsza to zero, bo | → | , a x2→∞ | ||
2x+1 | 2 |
x | x+1−1 | −1 | ||||
druga: ( | )x=( | )x=(1+ | )x+1 *(x/x+1)→e−1 | |||
x+1 | x+1 | x+1 |
x | a | |||
bo | →1 i korzystamy z faktu (1+ | )n→ea gdy n→∞ | ||
x+1 | n |
x | 1 | 1 | |||||||||||||
x →∞, ( | )x = | → | |||||||||||||
x+1 |
| e |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |