matematykaszkolna.pl
Dowod Fajter : Wukaz ze jesli b= a+1 c= a*b d= ab+1 to a2+b2+c2= d2 Dowod a2+(a+1)2+a2b2= (ab+1)2 a2+a2+2a+1+a2b2= a2b2+2ab+1 2a2+2a+1+a2b2≠ a2b2+2ab+1 Cos zawalilem
16 paź 23:54
Blee: a2 + (a+1)2 +a2*(a+1)2 = (a*(a+1) +1)2
16 paź 23:57
a7: 2a2+2a=2ab 2a2+2a=2a(a+1) i się zgadza nie
16 paź 23:57
Blee: skoro wiesz, że b = a+1 to czemu się nie pozbyłeś/−aś w pełni tego 'b'
16 paź 23:57
Fajter : Jutro do tego wroce .
17 paź 00:42
Dziadek Mróz: b = a + 1 c = ab = a(a + 1) d = ab + 1 = c + 1 = a(a + 1) + 1 a2 + b2 + c2 = d2 a2 + (a + 1)2 + (a(a + 1))2 = (a(a + 1) + 1)2 a2 + a2 + 2a + 1 + a2(a + 1)2 = (a(a + 1))2 + 2a(a + 1) + 1 2a2 + 2a + 1 + a2(a2 + 2a + 1) = a2(a2 + 2a + 1) + 2a2 + 2a + 1 2a2 + 2a + 1 = 2a2 + 2a + 1 L = P
17 paź 08:00
Fajter : dziekuje wszystkim za pomoc
17 paź 12:28