| 3 | ||
a) lim | ||
| (x−2)2 |
| −4 | ||
b)lim | ||
| |x−3| |
| x3 | ||
c) lim | ||
| x2+2x |
| √x4+x | ||
d) lim | ||
| x−1 |
| −4 | ||
b) granica typu [ | ] | |
| 0+ |
| x3 | x2 | 4 | ||||
c) | = | więc granica typu [ | ] | |||
| x2 + 2x | x + 2 | 0− |
| √x4 + x | x2√1 + 1/x3 | |||
d) | = | więc co zostaje po redukcji? | ||
| x−1 | x(1 − 1/x) |
| √x4 + x | |x|√x2+ 1/x | −x√x2 + 1/x | |||
= | = | ||||
| x−1 | x−1 | x(1−x) |