3 | ||
a) lim | ||
(x−2)2 |
−4 | ||
b)lim | ||
|x−3| |
x3 | ||
c) lim | ||
x2+2x |
√x4+x | ||
d) lim | ||
x−1 |
−4 | ||
b) granica typu [ | ] | |
0+ |
x3 | x2 | 4 | ||||
c) | = | więc granica typu [ | ] | |||
x2 + 2x | x + 2 | 0− |
√x4 + x | x2√1 + 1/x3 | |||
d) | = | więc co zostaje po redukcji? | ||
x−1 | x(1 − 1/x) |
√x4 + x | |x|√x2+ 1/x | −x√x2 + 1/x | |||
= | = | ||||
x−1 | x−1 | x(1−x) |