dx | ||
∫ | ||
(sin2x+3cos2x)2 |
dt | ||
dx = | ||
1+t2 |
t2+1 dt | ||
Doszedłem więc do wyniku: ∫ | i tutaj nie wiem jak je dalej ruszyć, | |
(t2+3)2 |
3 | tgx | tgx | ||||
Wynik ma wynosić I = | arctg | − | ||||
4√2 | √2 | 4tg2x+2 |
t2+1 | t2 + 3 −2 | 1 | 2 | ||||
= | = | − | |||||
(t2+3)2 | (t2+3)2 | t2+3 | (t2+3)2 |
t2+1 | a1t+a0 | b1t+b0 | ||||
∫ | dt = | +∫ | dt | |||
(t2+3)2 | t2+3 | t2+3 |
t2+1 | a1(t2+3)−2t(a1t+a0) | b1t+b0 | |||
= | + | ||||
(t2+3)2 | (t2+3)2 | t2+3 |
t2+1 | 1 | t | 2 | dt | |||||
∫ | dt =− | + | ∫ | ||||||
(t2+3)2 | 3 | t2+3 | 3 | t2+3 |
t2+1 | 1 | t | 2 | 1 | dt | ||||||||||||||
∫ | dt =− | + | ∫ | ||||||||||||||||
(t2+3)2 | 3 | t2+3 | 3 | 3 |
|
t2+1 | 1 | t | 2 | t | |||||
∫ | dt =− | + | arctan( | )+C | |||||
(t2+3)2 | 3 | t2+3 | 3√3 | √3 |
t2+1 | 1 | t | 2√3 | √3 | |||||
∫ | dt =− | + | arctan( | t)+C | |||||
(t2+3)2 | 3 | t2+3 | 9 | 3 |