a3+b3 | a2+b2 | a | a2 | |||||
[ | − | ] : [ | − | ]= | ||||
a3−b3 | a2−b2 | a2+ab+b2 | a3−b3 |
(a3+b3 | a2+b2 | |||
=[ | − | ] : | ||
(a−b)*(a2+ab+b2) | (a−b)*(a+b) |
a | a2 | |||
: [ | − | ]= | ||
a2+ab+b2 | (a−b)*(a2+ab+b2) |
1 | a3+b3 | a2+b2 | a*(a−b)−a2 | |||||
= | *[ | − | ]: [ | ]= | ||||
a−b | (a2+ab+b2) | (a+b) | (a−b)*(a2+ab+b2) |
1 | a3+b3 | a2+b2 | (a−b)*(a2+ab+b2) | |||||
= | *[ | − | ]* | = | ||||
a−b | (a2+ab+b2) | (a+b) | −ab |
a3+b3 | a2+b2 | (a2+ab+b2) | ||||
=[ | − | ]* | = | |||
(a2+ab+b2) | (a+b) | −ab |
(a3+b3)*(a+b)−(a2+b2)*(a2+ab+b2) | (a2+ab+b2) | |||
= | * | = | ||
(a+b)*(a2+ab+b2) | −ab |
(a3+b3)*(a+b)−(a2+b2)*(a2+ab+b2) | 1 | |||
= | * | = po wymnożeniu i redukcji | ||
(a+b) | −ab |
−2a2b2 | 1 | |||
= | * | = | ||
(a+b) | −ab |
2ab | ||
= | ||
a+b |
a(a−b)−a2 | −ab | |||
dzielnik ma postać: | = | |||
a3−b3 | a3−b3 |
a3+b3 | a3−b3 | a2+b2 | a3−b3 | |||||
2/ W= | * | + | * | = | ||||
a3−b3 | −ab | a2−b2 | ab |
−(a3+b3) | (a2+b2)(a3−b3) | |||
= | + | = | ||
ab | (a2−b2)ab |
−(a3+b3)(a2−b2)+a5−a2b3+a3b2−b5 | 2a3b2−2a2b3 | |||
= | = | = | ||
(a2−b2)ab | (a−b)(a+b)ab |
2a2b2(a−b) | 2ab | |||
= | = | |||
(a−b)(a+b)ab | a+b |
2ab | ||
Odp: W= | ||
a+b |