dt | ||
2*całka = ∫ | = ln (t + √1+t2)=ln(1/x + √1+1/x2) | |
√1+t2 |
1 | dt | |||
x = | , dx = − | |||
t | t2 |
dx | t | dr | dt | |||||
−∫ | = ∫ | = ∫ | ||||||
x √1+x2 | √1+1/t2 | t2 | √1+t2 |
1 | ||
−∫ | ||
2x√1+x2 |
2t | ||
x= | ||
t2−1 |
2(t2−1)−2t*2t | ||
dx= | dt | |
(t2−1)2 |
−2t2−2 | ||
dx= | dt | |
(t2−1)2 |
2t2−t2+1 | ||
xt−1= | ||
t2−1 |
t2+1 | ||
xt−1= | ||
t2−1 |
1 | t2−1 | t2−1 | (−2)(t2+1) | ||
∫− | dt | ||||
2 | 2t | t2+1 | (t2−1)2 |
1 | 1 | ||
∫ | dt | ||
2 | t |
1 | ||
= | ln|t|+C | |
2 |
1 | √1+x2+1 | |||
= | ln| | |+C | ||
2 | x |