(3x3−x2+2x−4) | |
√x2−3x+2 |
1 | |
(−202 √2−135 ln(3−2 √2)) | |
16 |
13 x | 101 | 135 | ||||
(x2+ | + | ) √x2−3 x+2+ | ln(−2√x2−3 x+2−2 x+3) | |||
4 | 8 | 16 |
dx | ||
∫3x3−x2+2x−4dx − ∫ | =∫(x2(3x−1)+2(x−2))dx − | |
P{x2−3x+2} |
x3 | 3x2 | x2 | ||||
x+∫x−2dx−∫P{x2−3x+2}−1dx= | +2x+ | −x+ | −2x−∫P{x2−3x+ | |||
3 | 2 | 2 |
x3 | x3 | |||
2}−1dx= | +2x2−x−∫(x2−3x−2)−12dx= | +2x2−x−∫(x+U{3−√1 | ||
3 | 3 |
x3 | x2 | x2 | x3 | |||||
7{2})(x+U{3+√17{2})dx= | +2x2−x− | − | = | +2x2−x | ||||
3 | 2 | 2 | 3 |
(3x3−x2+2x−4) | dx | |||
1) ∫ | dx=(ax2+bx+c)√x2−3x+2+A*∫ | |||
√x2−3x+2 | √x2−3x+2 |
(3x3−x2+2x−4) | |
= | |
√x2−3x+2 |
(2x−3) | A | |||
(2ax+b)*√x2−3x+2+(ax2+bx+c)* | + | ⇔ | ||
2√x2−3x+2 | √x2−3x+2 |
(3x3−x2+2x−4) | |
= | |
√x2−3x+2 |
(2ax+b)*(x2−3x+2)+(ax2+bx+c)*(x−3/2)+A | |
√x2−3x+2 |
15 | 9 | |||
3x3−x2+2x−4=3ax3+x2*(− | a+b)+x*(4a− | b+c)+(2b−3/2c+A) | ||
2 | 2 |
13 | 101 | 135 | ||||
a=1, b= | , c= | , A= | ||||
4 | 8 | 16 |
(3x3−x2+2x−4) | ||
∫ | dx= | |
√x2−3x+2 |
13 | 101 | 135 | dx | |||||
=(x2+ | x+ | )√x2−3x+2+ | *∫ | = | ||||
4 | 8 | 16 | √x2−3x+2 |
13 | 101 | 135 | ||||
=(x2+ | x+ | )√x2−3x+2+ | ln|2x−3+2√x2−3x+2|+C | |||
4 | 8 | 16 |
101 | 135 | |||
0∫1(...) dx=0−( | *√2+ | ln|−3+2*√2|= | ||
8 | 16 |
101 | 135 | |||
=− | √2+ | ln(3−2√2) | ||
8 | 16 |
3x3−x2+2x−4 | ||
∫ | dx | |
√x2−3x+2 |
t2−2 | ||
x= | ||
2t−3 |
2t(2t−3)−2(t2−2) | ||
dx= | dt | |
(2t−3)2 |
2t2−6t+4 | ||
dx= | dt | |
(2t−3)2 |
2t2−3t−t2+2 | ||
t−x= | ||
2t−3 |
t2−3t+2 | ||
t−x= | ||
2t−3 |
3(t2−2)3−(t2−2)2(2t−3)+2(t2−2)(2t−3)2−4(2t−3)3 | ||
3x3−x2+2x−4= | ||
(2t−3)3 |
3t6−2t5−7t4−48t3+170t2−176t+60 | 2t−3 | 2(t2−3t+2) | ||
∫ | dt | |||
(2t−3)3 | (t2−3t+2) | (2t−3)2 |
3t6−2t5−7t4−48t3+170t2−176t+60 | ||
2∫ | dt | |
(2t−3)4 |