| 3x−2 | ||
∫ | ||
| x2−4x+5 |
| 3*x − 2 | 2*x − 4 | x + 2 | ||||
J = ∫ | dx = ∫ | dx + ∫ | dx | |||
| x2 − 4*x + 5 | x2 − 4*x + 5 | x2 − 4*x + 5 |
| 2x − 4 | 1 | 2*x − 4 | ||||
J = ∫ | dx + | ∫ | dx + | |||
| x2 − 4*x + 5 | 2 | x2 − 4*x + 5 |
| 4 | ||
∫ | dx | |
| x2 − 4*x + 5 |
| 3 | 2*x − 4 | 4 | ||||
J = | ∫ | dx + ∫ | dx | |||
| 2 | x2 − 4*x + 5 | x2 − 4*x + 5 |
| 3 | ||
J = | *ln(x2 − 4*x + 5) + J1 gdzie | |
| 2 |
| 4 | 1 | |||
J1 = ∫ | dx = 4∫ | dx | ||
| x2 − 4*x + 5 | (x − 2)2 + 1 |
| dt | ||
J1 = 4∫ | = 4arctg(t) = 4arctg(x − 2) | |
| t2 + 1 |
| 3 | ||
J = | *ln(x2 − 4*x + 5) + 4*arctg(x − 2) + C | |
| 2 |