π | cos x | |||
Niech x∊(0, | ). Pokaż ze | >8. | ||
4 | sin2 x(cos x − sin x) |
cos(x) | 1 | ||
= | |||
sin2(x)(cos(x)−sin(x)) | sin2(x)(1−tg(x)) |
cos(x) | 1 | 1 | |||
= | * | ||||
sin2(x)(cos(x)−sin(x)) | sin2(x) | 1−tg(x) |
cos(x) | cos2(x)+sin2(x) | 1 | ||
= | ||||
sin2(x)(cos(x)−sin(x)) | sin2(x) | 1−tg(x) |
cos(x) | 1 | ||
= (1+ctg2(x)) | |||
sin2(x)(cos(x)−sin(x)) | 1−tg(x) |
cos(x) | tg2(x)+1 | ||
= | |||
sin2(x)(cos(x)−sin(x)) | tg2(x)(1−tg(x)) |
tg2(x)+1 | |
> 8 | |
tg2(x)(1−tg(x)) |