1 | ||
du = | dx | |
cos2(x) |
1 | ||
cos2(x) = | ||
u2+1 |
u2 | ||
sin2(x) = | ||
u2+1 |
u | ||
sin(x)cos(x) = | ||
1+u2 |
1 | ||
∫ | dx = ∫ √[u/(1+u2)]/[u2/(u2+1)]3du = | |
√cos3(x)sin5(x) |
u−3/2 | u1/2 | |||
= ∫ (1+u2)√1/u5du = ∫ u−5/2 + u−1/2 du = | + | + C = | ||
−3/2 | 1/2 |
2 | ||
= − | tg(x))−3/2 + 2(tg(x))1/2 + C | |
3 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |