pomoże ktoś?
|AS|=e, |BS|=f
1)
| e | 7 | ||
= | z tw. o dwusiecznej kąta w trójkacie | ||
| f | 8 |
| 7 | |
f+f=9 | |
| 8 |
| 15 | |
f=9 | |
| 8 |
| 24 | 21 | |||
f= | , e= | |||
| 5 | 5 |
| 7+8+9 | ||
p= | =12 | |
| 2 |
| 1 | ||
12√5= | *8*9*sinB | |
| 2 |
| √5 | ||
sinB= | ||
| 3 |
| r | ||
sinB= | ||
| f |
| 24 | √5 | |||
r= | * | |||
| 5 | 3 |
| 8√5 | ||
r= | ||
| 5 |
| 64 | ||
Po=π* | ||
| 5 |
2 sposób
Ze wzoru Herona : PΔABC = √12(12−7)(12−8)(12−9)= 12√5 ( jak u Mili
P(deltoiduACBD)=2*P(ABC)= 24√5
| 14+16 | Pd | 24√5 | 8√5 | |||||
Pd=r*p , p= | =15 r= | = | = | |||||
| 2 | p | 15 | 5 |
| 64 | ||
Pk= | π [j2] | |
| 5 |