cosx | ||
∫ | dx | |
cosx+sinx |
cos x | cos(x−π/2) − sin(x−π/2) | ||
= | |||
cos x + sin x | 2 cos(x−π/2) |
1 | ||
całka = | (x + ln |cos(x−π/2)|) | |
2 |
1 | ||
∫ | dx | |
1+tan(x) |
1 | ||
∫ | dt | |
(1+t)(1+t2) |
1 | (1+t2)+(1−t2) | ||
∫ | dt | ||
2 | (1+t)(1+t2) |
1 | (1+t2)+(1+t)(1−t) | ||
∫ | dt | ||
2 | (1+t)(1+t2) |
1 | 1 | t−1 | ||||
= | ∫ | dt−∫ | dt | |||
2 | 1+t | 1+t2 |
1 | 1 | 1 | 2t | 1 | ||||||
= | ∫ | dt− | ∫ | dt+∫ | dt | |||||
2 | 1+t | 2 | 1+t2 | 1+t2 |
1 | 1 | |||
= | ln|1+t|− | ln|1+t2|+arctan(t)+C | ||
2 | 2 |
1 | ||
Zdaje się że po rozbiciu na sumę całek nie dopisałem | przed tą drugą całką | |
2 |
1 | 1 | 1 | t−1 | ||||
∫ | dt− | ∫ | dt | ||||
2 | 1+t | 2 | 1+t2 |
cosx | cosx+(cosx+sinx)−sinx | ||
= | = | ||
cosx+sinx | 2*(cosx+sinx) |
1 | (cosx+sinx)+(cosx−sinx) | |||
= | * | |||
2 | cosx+sinx |
1 | (cosx+sinx)+(cosx−sinx) | ||
∫ | dx= | ||
2 | cosx+sinx |
1 | −sinx+cosx | |||
= | (∫dx+∫ | dx)= | ||
2 | cosx+sinx |
1 | ||
= | (x+ln|cosx+sinx|)+C | |
2 |