1−cos2x | ||
(sin2x)2=( | )2 i później podobny myk z cos22x | |
2 |
1 | ||
sin2x= | *(cos2x−1) | |
2 |
1 | ||
sin4x= | (cos2(2x)−2cos(2x)−1) | |
4 |
1 | 1 | 1 | ||||
∫sin4x dx= | ∫ (cos2(2x)dx − | cos(2x)dx− | ∫1dx=... | |||
4 | 2 | 4 |
1 | n−1 | |||
∫sinn(x)dx=− | cos(x)sinn−1(x)+ | ∫sinn−2(x)dx | ||
n | n |
1 | 3 | |||
I4=− | cos(x)sin3(x)+ | I2 | ||
4 | 4 |
1 | 1 | |||
I2=− | cos(x)sin(x)+ | I0 | ||
2 | 2 |
1 | 3 | 3 | ||||
I4=− | cos(x)sin3(x)− | cos(x)sin(x)+ | x+C | |||
4 | 8 | 8 |
sin2(x) | tg2(x) | |||
sin2(x)= | = | |||
cos2(x)+sin2(x) | 1+tg2(x) |
cos2(x) | 1 | |||
cos2(x)= | = | |||
cos2(x)+sin2(x) | 1+tg2(x) |
1 | ||
∫sin4(x)dx=∫sin4(x)cos2(x) | dx | |
cos2(x) |
t4 | 1 | ||
∫ | dt | ||
(1+t2)2 | 1+t2 |
t4 | ||
∫ | dt | |
(1+t2)3 |
t4 | a3t3+a2t2+a1t+a0 | b1t+b0 | ||||
∫ | dt= | +∫ | dt | |||
(1+t2)3 | (1+t2)2 | 1+t2 |