1 | du | |||
Pierwsze podstawienie: u = | proweadzi do całki: − ∫ | |||
x | u2√1+u |
dz | ||
Teraz podstawienie: z = √1 + u prowadzi do: − 2∫ | i rozkład na ułamki proste. | |
(z2−1)2 |
√1+u | ||
... = −∫ | du | |
u2 |
1 | dt | |||
I dobrze , dalej: dx = − x2dt = − | dt , czyli mamy: − ∫ | |||
t2 | t2√1+t |
1 | ||
t2= 1+ | ||
x |
1 | ||
x= | ||
t2−1 |
1 | t | 1 | ||||
całka = ∫t ( | )' dt = | − ∫ | dt | |||
t2−1 | t1−1 | t2−1 |
1 | 1 | 1 | 1 | ||||
= | ( | − | ) | ||||
t2−1 | 2 | t−1 | t+1 |
dx | ||
Oczywiście, mój błąd .... liczyłem całkę: ∫ | ||
√1 + 1/x |
1 | ||
√1+1/x=t− | ||
√x |
1 | 1 | 1 | ||||
1+ | = t2−2t | + | ||||
x | √x | x |
1 | ||
1 = t2−2t | ||
√x |
1 | ||
2t | = t2 − 1 | |
√x |
1 | t2−1 | ||
= | |||
√x | 2t |
2t | ||
√x = | ||
t2−1 |
4t2 | ||
x = | ||
(t2−1)2 |
8t(t2−1)2−4t2(t2−1)4t | ||
dx = | dt | |
(t2−1)4 |
8t(t2−1−2t2) | ||
dx = | dt | |
(t2−1)3 |
8t3+8t | ||
dx = − | ||
(t2−1)3 |
t2−1 | 2t2−t2+1 | |||
√1+1/x=(t− | )= | |||
2t | 2t |
t2+1 | ||
√1+1/x= | ||
2t |
t2+1 | −8t(t2+1) | ||
∫ | dt | ||
2t | (t2−1)3 |
−4(t2+1)2 | ||
∫ | dt | |
(t2−1)3 |