1.an = log(n2+1)−2logn = ?
| 3√4+4 | ||
2.an= | = ? | |
| √4+1 |
| n√4+2 | ||
3. an= | = ? | |
| √4+2 |
| n | ||
4. an= ( | )2n+3 = ? | |
| 2n+1 |
| 2n+1 | ||
5. an= an= ( | )n+1 = ? | |
| n |
| n2+1 | 1 | |||
an=log(n2+1) − logn2 = log | = log(1+ | ) → log(1+0)=log1=0 | ||
| n2 | n2 |
| 1 | n | 1 | n+(1/2)−(1/2) | |||||
an = ( | * | )2n+3 = ( | )2n+3*( | )2n+3 = | ||||
| 2 | n+1/2 | 2 | n+1/2 |
| 1 | 1 | |||
( | )2n+3*(1− | )2n+3 = | ||
| 2 | 2n+1 |
| 1 | 1 | 1 | ||||
( | )2n+3*(1− | )2n+1*(1− | )2 → 0*e−1*1 = 0 | |||
| 2 | 2n+1 | 2n+1 |
| 2(n+1/2) | 1 | |||
an = ( | )n+1 = 2n+1*(1+ | )n+1 = | ||
| n | 2n |
| 1 | 1 | |||
2n+1*(1+ | )*(1+ | )n = | ||
| 2n | 2n |
| 1 | 1 | |||
2n+1*(1+ | )*((1+ | )2n)1/2 → +∞*1*e1/2 = +∞ | ||
| 2n | 2n |