| df | |
= y1/3 = 3√y | |
| dx |
| df | 1 | x | |||
= x* | *y−2/3 = | ||||
| dy | 3 | 33√y2 |
| 0 | ||
Pochodne trzeba policzyć z definicji. Dla np (0, 0) wychodzi mi lim h→0 | − jak mam | |
| h |
| df | f(0+h,y)−f(0,y) | h*y1/3−0 | |||
(0,y)limh→0 | = limh→0 | = | |||
| dx | h | h |
| df | |
(0,0) = 0 | |
| dx |
| df | |
(0,a) = 3√a | |
| dx |
| df | |
(a,0) = 0 | |
| dx |
| df | |
(0,0) nie istnieje | |
| dy |
| 1 | ||
a jeżeli pójdziesz po krzywej y= | dostaniesz f(x,y)=1 → 1 | |
| x3 |
| df | f(k,a+h)−f(0,a) | k*(a+h)1/3−0 | |||
(0,a) = limh,k→0 | = limh→0 | = | |||
| dy | h | h |
| k | k | 0 | ||||
limk,h→0 | = limk,h→0 | = | =0 | |||
| (a+h)−2/3 | 3√(a+h)2 | 3√a2 |
| df | ||
analogicznie liczysz | (a,0) dla a≠0 ale tam Ci wyjdzie +∞ lub −∞ | |
| dy |
| 0 | ||
Ok, a jak mam pochodną cząstkową typu lim h→0 | to czy wystarczy napisać, że pochodna | |
| h |
| df | f(x,a+h)−f(x,a) | ||
(x,a) = limh→0 | = | ||
| dy | h |
| x*(a+h)1/3 − x*a1/3 | ||
limh→0 | = | |
| h |
| (a+h−a | ||
x*limh→0 | = | |
| h((a+h)2/3+(a(a+h))1/3+a2/3 |
| 0 | ||
x* | ||
| 0+a2/3+a2/3 |
| df | ||
czyli | (0,a)=0 | |
| dy |
| df | f(a,h)−f(a,0) | a*h1/3−0 | |||
(x,0) = limh→0 | = limh→0 | = | |||
| dy | h | h |
| a | ||
limh→0 | ||
| h2/3 |
| df | ||
czyli | (a,0) nie istnieje | |
| dy |
| (x+h)3√y−x3√y | ||
fx(x, y)=limh→0 | = limh→0 3√y = 3√y | |
| h |
| x3√y+h−x3√y | ||
fy(x, y)=limh→0 | = | |
| h |
| 1 | x | |||
x limh→0 | = | dla y≠0 | ||
| 3√(y+h)2+3√y+h3√y+3√y2 | 33√y2 |
| x | ||
fy(x, 0)=limh→0 | = ∞ dla y≠0, 0 dla y=0 | |
| 3√h2 |
| 1 | 1 | |||
W 3 i 4 linijce poprzedniego postu następuje przejście z x*(a + h) | − x*a | na | ||
| 3 | 3 |
| b3−c3 | ||
b−c = | ||
| b2+bc+c2 |
| a+h−a | ||
(a+h)1/3 − a1/3 = | ||
| (a+h)2/3+(a+h)1/3*a1/3+a2/3 |
| h | ||
x* | = | |
| h*[(a+h)2/3+(a+h)1/3*a1/3+a2/3] |
| 1 | 1 | x | ||||
x* | → x* | = | ||||
| (a+h)2/3+(a+h)1/3*a1/3+a2/3 | 3a2/3 | 3a2/3 |
| 0 | ||
w p−cie (0,a) nie zmieni to wyniku bo mamy | = 0 | |
| 3a2/3 |