Ciekawa całka
Maks: Oblicz całkę podwójną w obszarze D, ∫∫x*max(x,y) dx dy, gdzie D: 0≤x≤1, 0≤y≤1
13 cze 08:07
jc: Podziel kwadrat na 2 trójkąty.
całka =∫01 dx∫0x x2 dy + ∫01 dy∫0y xy dx
13 cze 08:23
Maks: Tak zrobiłem, ale miałem problem z określeniem, czy w granicach 0 do 1 i 0 do x (pierwsza z
rozbitych całek) liczymy ∫x*x dy dx?
13 cze 08:35
jc: Powyżej prostej y=x zachodzi nierówność y>x, poniżej tej prostej x>y.
13 cze 08:41
Maks: To wiem, rysunek jest pomocny, jednak mimo to mam watpliwosci czy zapisana przeze mnie pierwsza
całka jest poprawna?
13 cze 08:45
Maks: ∫01 ∫x1 x*y dx dy czy druga z całej jest poprawna?
13 cze 08:50
jc: Tak.
13 cze 09:14
Maks: Bardzo dziękuję za pomoc!
13 cze 09:33