dx | ||
∫ | ||
x √1 + x5 + x10 |
−1/t2 | ||
= ∫ | ||
1/t √1+1/t5 + 1/t10 |
t4 | ||
∫ | ||
√t10 + t5 + 1 |
dt | ||
Mam 1/5 ∫ | jak to rozgryźć? | |
t √1 + t + t2 |
1 | dt | ||
∫ | |||
5 | t√1+t+t2 |
1−2u | ||
t = | ||
u2−1 |
u−2u2+u2−1 | ||
ut+1= | ||
u2−1 |
−(u2−u+1) | ||
ut+1= | ||
u2−1 |
−2(u2−1)−2u(1−2u) | ||
dt = | du | |
(u2−1)2 |
2(u2−u+1) | ||
dt = | du | |
(u2−1)2 |
1 | u2−1 | u2−1 | 2(u2−u+1) | ||
∫ | du | ||||
5 | 1−2u | −(u2−u+1) | (u2−1)2 |
1 | −2 | ||
∫ | du | ||
5 | 1−2u |
1 | |
ln|1−2u|+C | |
5 |
√1+t+t2−1 | ||
u= | ||
t |
2−2√1+t+t2 | ||
−2u= | ||
t |
t+2−2√1+t+t2 | ||
1−2u= | ||
t |
1 | t+2−2√1+t+t2 | ||
ln| | |+C | ||
5 | t |