12(2x−4)+1 | ||
∫ | dx = | |
x2−4x+13 |
12(2x−4) | 1 | |||
= ∫ | dx + | dx | ||
x2−4x+13 | x2−4x+13 |
1 | 1 | |||
= | ln|x2−4x+13| + | dx | ||
2 | (x−2)2+9 |
1 | 1 | |||
= | ln|x2−4x+13| + | dx | ||
2 | (x−2)2+32 |
1 | 1 | x−2 | ||||
= | ln|x2−4x+13| + | arctg( | ) + C | |||
2 | 3 | 3 |
1 | ||
współczynniki więc mnożysz przez | żeby było samo x | |
2 |
1 | |
(2x−4) jeśli to wymnożysz to dostajesz x−2, pamiętasz że ma być x−1 dlatego do tego | |
2 |
1 | ||
(2x−4) dodajesz jedynkę | ||
2 |
f'(x) | ||
− korzystasz ze wzoru ∫ | dx = ln|f(x)| + C do pierwszej całki | |
f(x) |
1 | 1 | x−p | ||||
− korzystasz ze wzoru ∫ | dx = | arctg | + C | |||
(x−p)2+a2 | a | a |
2(x−1) | 2x−2−2+2 | 2x−4+2 | ||||
x−1 = | = | = | ||||
2 | 2 | 2 |
1 | 2x−4 | 2 | ||||
J = | ∫[ | + | ] dx = | |||
2 | x2−4x+13 | x2−4x+13 |
1 | 2x−4 | 1 | |||
∫ | dx + ∫ | dx | |||
2 | x2−4x+13 | (x−2)2+9 |
1 | dt | 1 | 1 | |||||
J1 = | ∫ | = | ln|t|+C = | ln(x2−4x+13)+C | ||||
2 | t | 2 | 2 |
1 | 1 | 1 | ||||||||||||||||||||||
J2 = ∫ | dx = | ∫ | dx | |||||||||||||||||||||
| 9 |
|
x−2 | ||
t = | ||
3 |
1 | ||
dt = | dx | |
3 |
1 | 1 | 1 | 1 | x−2 | ||||||
J2 = | *3∫ | dt = | arctg(t) +C = | arctg | +C | |||||
9 | t2+1 | 3 | 3 | 3 |