matematykaszkolna.pl
analiza wektorowa seymour: wie ktoś jak udowodnić, że rot(rotA)=grad(divA)−ΔA?
9 cze 18:33
Seymour: Ponawiam pytanieemotka
9 cze 22:16
piotr: (−f(0,0,2)(x,y,z)−f(0,2,0)(x,y,z)+g(1,1,0)(x,y,z)+h(1,0,1)(x,y,z), f(1,1,0)(x,y,z)−g(0,0,2)(x,y,z)−g(2,0,0)(x,y,z)+h(0,1,1)(x,y,z), f(1,0,1)(x,y,z)+g(0,1,1)(x,y,z)−h(0,2,0)(x,y,z)−h(2,0,0)(x,y,z)}
9 cze 22:36
piotr: rot(rot(f(x,y,z), g(x,y,z), h(x,y,z))) = (−f(0,0,2)(x,y,z)−f(0,2,0)(x,y,z)+g(1,1,0)(x,y,z)+h(1,0,1)(x,y,z), f(1,1,0)(x,y,z)−g(0,0,2)(x,y,z)−g(2,0,0)(x,y,z)+h(0,1,1)(x,y,z), f(1,0,1)(x,y,z)+g(0,1,1)(x,y,z)−h(0,2,0)(x,y,z)−h(2,0,0)(x,y,z))
9 cze 22:41
piotr: grad(div((f(x,y,z), g(x,y,z), h(x,y,z)))−Δ((f(x,y,z), g(x,y,z), h(x,y,z)) = ( −f(0,0,2)(x,y,z)−f(0,2,0)(x,y,z)+g(1,1,0)(x,y,z)+h(1,0,1)(x,y,z), f(1,1,0)(x,y,z)−g(0,0,2)(x,y,z)−g(2,0,0)(x,y,z)+h(0,1,1)(x,y,z), f(1,0,1)(x,y,z)+g(0,1,1)(x,y,z)−h(0,2,0)(x,y,z)−h(2,0,0)(x,y,z) )
9 cze 22:45