3 | ||
sin2(x+pi/4)+cos2x−2sin(x+pi/4)− √2cosx+ | =0 | |
2 |
π | π | 1 | ||||
sin2(x+ | ) − 2sin(x+ | ) + 1 +cos2 x − √2cos x + | = 0 | |||
4 | 4 | 2 |
π | √2 | |||
(sin(x+ | ) − 1)2 + (cos x − | )2 = 0 | ||
4 | 2 |
π | √2 | |||
sin(x+ | )−1=0 i cos x − | = 0 | ||
4 | 2 |
π | √2 | |||
sin(x+ | )=1 i cos x = | |||
4 | 2 |
π | π | π | π | |||||
x+ | = | +2kπ i (x = | +2kπ lub x = − | +2kπ) | ||||
4 | 2 | 4 | 4 |
π | π | π | ||||
x = | +2kπ i (x = | +2kπ lub x = − | +2kπ) | |||
4 | 4 | 4 |
π | π | π | ||||
x = | +2kπ lub (x= | +2kπ i x= − | +2kπ) | |||
4 | 4 | 4 |
π | ||
x = | +2kπ lub sprzeczność | |
4 |
π | ||
Odp: x= | +2kπ | |
4 |