1 | ||
∫xsin | xdx | |
2 |
1 | ||
v'=sin | x | |
2 |
1 | ||
chodzi mi 2 (tutaj rozwiazanie calki, 2sin | x ), wiem ze mozna wyciagnac pozniej ta 2 | |
2 |
cos(ax) | ||
1) ∫sin(ax) dx=− | ||
a |
1 | 1 | |||
2) [dx=du, v=∫sin( | x) dx=−2cos( | x)] | ||
2 | 2 |
1 | ||
∫x*sin | xdx= | |
2 |
1 | 1 | 1 | 1 | |||||
=x*(−2cos( | x))+2∫cos( | x)dx=−2xcos( | x)+2*2sin( | x)= | ||||
2 | 2 | 2 | 2 |
1 | 1 | |||
=4sin( | x)−2x cos( | x)+C | ||
2 | 2 |