| 1 | ||
1) v' = x v = | x2 | |
| 2 |
| 2lnx | ||
u = ln2x u' = | ||
| x |
| 1 | 1 | 2lnx | 1 | |||||
.... = | x2*ln2x − ∫ | x2* | dx = | x2*ln2x − ∫x*lnxdx | ||||
| 2 | 2 | x | 2 |
| x2 | x2 | 1 | ||||
= | ln2x−∫ | 2lnx | ||||
| 2 | 2 | x |
| x2 | ||
= | ln2x−∫xlnxdx | |
| 2 |
| x2 | x2 | x2 | 1 | ||||
= | ln2x−( | lnx −∫ | dx | ||||
| 2 | 2 | 2 | x |
| x2 | x2 | x | ||||
= | ln2x− | lnx+∫ | dx | |||
| 2 | 2 | 2 |
| x2 | ||
= | (2ln2x−2lnx+1)+C | |
| 4 |
| 1 | 1 | |||
∫xln2x dx = | x2 ln2(x) − | ∫2xlnx dx = | ||
| 2 | 2 |
| 1 | 1 | 1 | ||||
= | x2 ln2(x) − | x2 ln(x) + | ∫x dx = | |||
| 2 | 2 | 2 |
| 1 | 1 | 1 | ||||
= | x2 ln2(x) − | x2 ln(x) + | x2 + C | |||
| 2 | 2 | 4 |