1 | 1 | |||
∑ 1 /(n+1)(n+2) = ∑ ( | − | ) = | ||
n+1 | n+2 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
∑ ( | − | ) = ( | − | ) + ( | − | ) + ( | − | ) + | ||||||||
n+1 | n+2 | 2 | 3 | 3 | 4 | 4 | 5 |
1 | 1 | 1 | 1 | |||||
... + ( | − | ) = | − | |||||
n+1 | n+2 | 2 | n+2 |
1 | 1 | 1 | |||
− | −−(n→∞)−−> | ||||
2 | n+2 | 2 |
1 | ||
∑(n=1 do∞) | =S | |
(n+1)*(n+2) |
1 | A | B | A*(n+2)+B*(n+1) | ||||
= | + | = | = | ||||
(n+1)*(n+2) | n+1 | n+2 | (n+1)*(n+2) |
A*n+2A+N*B+B | n*(A+B)+2A+B | |||
= | = | ⇔ | ||
(n+1)*(n+2) | (n+1)*(n+2) |
1 | 1 | 1 | ||||
Sn=∑(k=1 do n) | =∑(k=1 do n)[ | − | ]= | |||
(k+1)*(k+2) | (k+1) | (k+2) |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
= | − | + | − | + | − | +...+ | − | + | − | = | ||||||||||
2 | 3 | 3 | 4 | 4 | 5 | n | n+1 | n+1 | n+2 |
1 | 1 | |||
= | − | |||
2 | n+2 |
1 | ||
limn→∞Sn= | ||
2 |
1 | 1 | 1 | ||||
Sn=∑(k=0 do n) | =∑(k=0 do n)[ | − | ]= | |||
(k+1)*(k+2) | (k+1) | (k+2) |
1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
=1− | + | − | +...+..+ | − | + | − | = | |||||||
2 | 2 | 3 | n | n+1 | n+1 | n+2 |
1 | ||
=1− | ||
n+2 |
1 | ||
limn→∞(1− | )=1 | |
n+2 |