1 | −1 | 1 | |||
= ( | )' = ( | )'' = | |||
(1+x)3 | 2(1+x)2 | 2(1+x) |
(−1)n | (−1)n | |||
= (∑n=0∞( | xn))'' = ∑n=0∞(( | xn)'') = | ||
2 | 2 |
(−1)n | (−1)n | |||
= ∑n=0∞(( | nxn−1)') = ∑n=0∞( | n(n−1)xn−2) = | ||
2 | 2 |
(−1)n | ||
= ∑n=0∞( | (n+1)(n+2)xn) | |
2 |
(−1)6 | ||
a6= | (6+1)(6+2)=28 | |
2 |
1 | ||
A(x)= | ||
(1−x)m+1 |
| ||||||||
an= | − jawna postać wzoru | |||||||
1 | ||
A(x)= | ||
1−(−x))3 |
| ||||||||
an= | *(−1)n | |||||||
| ||||||||
A(x)=(1+x)−3=∑n=0∞ | xn | |||||||
| 3*4*...*(n+2) |
| |||||||||||||||
=(−3)*(−4)*...*(−n−2)/n!=(−1)n* | =(−1)n* | ||||||||||||||||
n! |