| √5+√17 | ||
x1= | ||
| 2 |
| √5+√17 | ||
x2= − | ||
| 2 |
| √5−√17 | ||
x3= | ||
| 2 |
| √5−√17 | ||
x4= − | ||
| 2 |
| 5+√17 | ||
t1= | ||
| 4 |
| 5−√17 | ||
t2= | ||
| 4 |
| 5+√17 | 5+√17 | |||
1=( | )2 + ( | ) a + b | ||
| 4 | 4 |
| 5−√17 | 5−√17 | |||
1=( | )2 + ( | ) a + b | ||
| 4 | 4 |
| 5 | ||
I z tego obliczamy a (mi wyszło − | ,a następnie b, które wyszło mi dziwne) | |
| 8 |
| 5−√17 | 5+√17 | |||
f(x)=(x2− | )(x2− | )+1= | ||
| 4 | 4 |