m | ||
k= | ( załóżmy, że m>n ) | |
n |
BP | ||
1) | =k⇔|BP|=k*|PC| stąd: |PC|+k*|PC|=a, | |
PC |
1 | k | |||
|PC|=a* | , | BP|=a* | |||
1+k | 1+k |
CQ | ||
2) | =k liczymy w podobny sposób | |
QA |
k | 1 | |||
|CQ|=b* | , |AQ|=b* | |||
1+k | 1+k |
AR | k | 1 | |||
=k⇔|AR|=c* | , |BR|=c* | ||||
BR | 1+k | 1+k |
1 | 1 | k | 1 | |||||
4) PΔARQ= | *|AR|*|AQ|*sinα= | c* | *b* | *sinα= | ||||
2 | 2 | 1+k | 1+k |
k | ||
= | *S | |
(1+k)2 |
k | ||
PΔRBP= | *S | |
(1+k)2 |
k | ||
PΔPQC= | *S | |
(1+k)2 |
3k | ||
S3= | *S | |
(1+k)2 |
3k | 3k | |||
PΔPQR=S− | *S=S*(1− | =.. | ||
(1+k)2 | (1+k)2 |
m | ||
Podstawiamy k= | ||
n |
| 3mn | ||||||||||||
=S*(1− | )=S*(1− | )= | |||||||||||
| (m+n)2 |
m2+2mn+n2−3mn | ||
=S* | ||
(m+n)2 |
PΔPQR | m2−mn+n2 | ||
= | |||
S | (m+n)2 |
(m+n)2*cb*sinα | (m+n)2*ac*sinβ | (m+n)2*ab*sinγ | ||||
S=P(PQR) P=P(ABC)= | = | = | ||||
2 | 2 | 2 |
mncb*sinα | mn | mn | mn | |||||
P1= | = | *P=P2...... = | *P=P3= | *P | ||||
2 | (m+n)2 | (m+n)2 | (m+n)2 |
P | P | m+n | ||||
to S= | (m+n)2−3mn)= | (m2−mn+n2) /* | ||||
(m+n)2 | (m+n)2 | m+n |
P(m3+n3) | ||
S= | ||
(m+n)3 |
S | m3+n3 | |||
zatem | = | |||
P | (m+n)3 |