katy
Eka: W czworokacie ABCD wiemy że AB = 4 − √2, BC = 1 oraz CD = 3, dodatkową kąt ABC = 135o oraz
kąt BCD = 90o. Oblicz tg∡CDA.
26 kwi 20:59
Bogdan:
| √2 | | √2 | |
A = (0, 0), B = (4−√2, 0), C = (4− |
| , |
| ) |
| 2 | | 2 | |
prosta BC: y = x − (4−
√2), CD⊥BC
| √2 | | √2 | |
prosta CD: y = −(x − (4− |
| )) + |
| ⇒ y = −x + 4 |
| 2 | | 2 | |
D = (x
D, y
D) = (x
D, −x
D+4), x
D > 0 i y
D > 0
| √2 | | √2 | |
|CD|2 = 9 ⇒ (xD − (4− |
| ))2 + (−xD+4 − |
| )2 = 9 |
| 2 | | 2 | |
x
D = ... i y
D = −x
D + 4 = ...
27 kwi 09:54
an:
∡FAE=∡FEA=45
o
CB=CE=1 BE=
√2
DE=4 AE=4−
√2+
√2=4 AF=FE=
√8
DF=4−
√8
27 kwi 16:50