| 1 | ||
P{ΔDEC}=P= | PΔABC} | |
| 2 |
| c' | ||
ΔDEC∼ΔABC w skali k= | ||
| c |
| PΔDEC | P | 1 | |||
= | = | ||||
| PΔABC | 2P | 2 |
| 1 | |
=k2 | |
| 2 |
| 1 | ||
k= | ||
| √2 |
| 1 | a√2 | |||
|CE|= | a= | |||
| √2 | 2 |
| a√2 | ||
|EB|=a− | ||
| 2 |
| CE |
| √2+1 | ||||||||||||
= | = | |||||||||||||
| EB |
| 1 |
Z podobieństwa trójkątów ABC i EFC w skali k>0
| P(ABC) | 2P1 | ||
= k2 ⇒ | =k2 ⇒ k=√2 | ||
| P(EFC) | P1 |
| x+y | y | y | ||||
to | =k ⇒ 1+ | =√2 ⇒ | = √2−1 | |||
| x | x | x |
| x | 1 | |||
to | = | = √2+1 | ||
| y | √2−1 |