| ab | ||
Uzasadnij, że dla a=log23 i b=log53, log 3= | . | |
| a+b |
| logcb | ||
logab= | skorzystaj z tego | |
| logca |
log15=log5 Takie coś mi wyszło.
| log 3 | ||
a= | ||
| log 2 |
| log 3 | ||
b = | ||
| log 5 |
| log23 | ||
ab = | ||
| (log2)(log5) |
| (log3)(log5)+(log2)(log3) | ||
a+b = | ||
| (log2)(log5) |
| ab | log23 | (log2)(log5) | |||
= | * | = | |||
| a+b | (log2)(log5) | (log3)*[ log5 + log2 ] |
| log3 | log3 | log3 | |||
= | = | = log3 | |||
| log5+log2 | log10 | 1 |