ab | ||
Uzasadnij, że dla a=log23 i b=log53, log 3= | . | |
a+b |
logcb | ||
logab= | skorzystaj z tego | |
logca |
log 3 | ||
a= | ||
log 2 |
log 3 | ||
b = | ||
log 5 |
log23 | ||
ab = | ||
(log2)(log5) |
(log3)(log5)+(log2)(log3) | ||
a+b = | ||
(log2)(log5) |
ab | log23 | (log2)(log5) | |||
= | * | = | |||
a+b | (log2)(log5) | (log3)*[ log5 + log2 ] |
log3 | log3 | log3 | |||
= | = | = log3 | |||
log5+log2 | log10 | 1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |